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Hematopoietic stem cell (HSC) transplantation can restore a new functional
hematopoietic system in recipients in cases where the system of the recipient is
not functional or for example is leukemic. However, the number of available
donor HSCs is often too low for successful transplantation. Expansion of HSCs
and thus HSC self-renewal ex vivo would greatly improve transplantation
therapy in the clinic. In vivo, HSCs expand significantly in the niche, but
establishing protocols that result in HSC expansion ex vivo remains challeng-
ing. In this review we discuss current knowledge of niche biology, the intrinsic
regulators of HSC self-renewal in vivo, and introduce novel niche-informed
strategies of HSC expansion ex vivo.

Significance of Ex Vivo HSC Expansion
HSCs sustain blood-cell formation in a process called hematopoiesis (see Glossary and Box
1). This is achieved by their ability to regenerate themselves long-term, which is referred to as
self-renewal activity, and through their ability to differentiate into cells of all mature blood
lineages. Human HSCs are rare cells (�0.01%) primarily found in bone marrow (BM) in adults
[1]. HSC transplantation (HSCT) can restore a new functional hematopoietic system and
blood cell production in recipients [2–4]. It is used in the clinic to treat leukemia and other
cancers, as well as bone-marrow failure syndromes and in gene therapy settings. The source of
HSCs for a transplant is either a patient’s own HSCs (autologous transplant) or HSCs from a
human leukocyte antigen (HLA)-matched donor in an allograft transplant setting [5,6]. For
HSCT, HSCs from BM or umbilical cord blood (UCB), or HSCs mobilized to blood by cytokine
granulocyte-colony stimulating factor (G-CSF), can be used. Infused donor HSCs then home
to and engraft in discrete BM HSC niches to reconstitute the blood system of the recipient [2].
Currently, autologous transplants have survival rates exceeding 80%, while the success rate for
allogeneic transplants at 5 years fluctuates between 30% and 70%, based in part on the initial
donor match [5]. The number of HSCs transplanted correlates with successful engraftment and
patient survival. For successful HSCT, high numbers of CD34+ cells (i.e., 3–4 � 106/kg of
human body weight) are required [6,7], and thus the numbers of HSCs in a given graft may not
be sufficient to allow transplantation to proceed. Protocols that result in HSC expansion ex
vivo would therefore be a highly desirable tool to further increase positive outcomes in the clinic.
Understanding the mechanisms of HSC self-renewal in vivo in depth should be a prerequisite
for the development of successful protocols to expand HSCs ex vivo for therapeutic
applications.

HSC self-renewal is regulated by a complex interplay of cell-intrinsic factors, such as
transcription factors, cell-cycle status, and metabolic pathways, as well as extrinsically by
both the local and the systemic environment. The local environment in the BM is referred to as
stem cell niche [8,9]. It is believed that signals from the niche are crucial for the regulation of
HSC self-renewal as well as for differentiation decisions [1,8,10,11]. In recent years numerous
cellular constituents of the murine BM niche and committed hematopoietic progeny have been
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High-throughput screening of chemi-
cal compound libraries has resulted in
a few successful attempts towards
HSC expansion ex vivo.

Attempts to engineer stem cell niches
ex vivo in 3D matrix culture systems
are promising.

1Division of Experimental Hematology
and Cancer Biology, Cincinnati
Children’s Research Foundation,
Cincinnati, OH 45229, USA
2Institute of Molecular Medicine, Ulm
University, Ulm, Germany
3Aging Research Center, Ulm
University, Ulm, Germany

*Correspondence.
sachin.kumar@cchmc.org (S. Kumar),
hartmut.geiger@cchmc.org,
hartmut.geiger@uni-ulm.de (H. Geiger).

Trends in Molecular Medicine, September 2017, Vol. 23, No. 9 http://dx.doi.org/10.1016/j.molmed.2017.07.003 799
© 2017 Elsevier Ltd. All rights reserved.

mailto:sachin.kumar@cchmc.org
mailto:�hartmut.geiger@cchmc.org
mailto:hartmut.geiger@uni-ulm.de
http://dx.doi.org/10.1016/j.molmed.2017.07.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.molmed.2017.07.003&domain=pdf


nvestigated that interact either directly or indirectly with HSCs and which might contribute to the
regulation of HSC self-renewal and differentiation [9,12–24]. As such, experiments usually
impair genetically or pharmacologically one type of cell niche to then analyze the changes in
HSC phenotype; however, much remains unknown regarding the mechanisms that regulate
the complex interplay among the distinct types of stromal elements under native conditions.
HSCs expand in numbers in vivo within their niche environment. Theoretically, the number of
HSCs in the niche is determined by the frequency of symmetric cell divisions that lead to the
generation of two stem cells or two progenitor cells, relative to the frequency of asymmetric
cell divisions that posit a balance between HSC and daughter cell generation [25]. HSCs
generally remain quiescent in the BM niche, while diverse stimuli that trigger loss of quiescence
cause robust entry into the cell cycle, and induce proliferation often associated with stress, DNA
- damage and apoptosis [26,27]. Ex vivo expansion will thus require approaches that result in
symmetric stem cell divisions [25], and hence HSC self-renewal without further differentiation
and apoptosis.

Mammalian HSCs undergo symmetric cell divisions in vivo during development [25] and in
adulthood. For example, using mice where HSCs were labeled with a dye ‘diluting’ HSCs
following division (label-retaining HSCs, LR-HSCs), murine HSC were found to complete four
symmetric self-renewal divisions in vivo before re-entering a state of dormancy [28]; neverthe-
less, persistent inflammatory signaling can disturb HSC dormancy, resulting in HSC exhaus-
tion [29]. Because adult HSCs have been shown to undergo self-renewal/expansion following
chemotherapy, radiation challenge, or transplantation, thus replenishing the hematopoietic
niche [4,30,31], it may be possible to achieve HSC expansion ex vivo once we improve our
understanding of the HSC-intrinsic and niche-dependent mechanisms that are responsible for
HSC expansion in vivo. We review below the most recent knowledge on mechanisms of HSC
self-renewal, placing a particular focus on the contribution of the HSC niche.

HSC Localization within the Niche
Adult HSCs reside in specific BM locations with unique environments known as niches. A large
set of data has revealed that there is vast heterogeneity of niches for HSCs within the BM
(recently reviewed in [22]). Niches for HSCs comprise endosteal niches and vascular niches,

Glossary
Allograft transplant: stem cells
from an HLA-matched donor are
transplanted.
Asymmetric cell division: leads to
the generation of two cells with
different potential: a daughter stem
cell and a daughter progenitor cell.
Ataxia telangiectasia mutated
deficient (Atm�/�) mice: ATM
regulates reprogramming efficiency
and genomic stability; Atm�/� mice
exhibit pancytopenia, bone marrow
(BM) failure, and hematopoietic stem
cell (HSC) exhaustion.
Autologous transplant: an
individual’s own stem cells are
collected in advance and
transplanted to herself/himself after
chemotherapy or radiation therapy.
Autophagy/mitophagy: process
that degrades/destructs
dysfunctional components of the
cytoplasm (autophagy) or
dysfunctional mitochondria
(mitophagy) in lysosomes.
CD34+ cells: human cells
expressing CD34; include both stem
and progenitor cell populations.
Cell-intrinsic: a property of cells
that is governed/regulated by
signaling/factors within, but not
through, the niche environment.
Competitive transplant settings:
transplantation of donor HSCs or BM
cells in the presence of genetically
trackable congenic competitor BM
cells.
Differentiation: the generation of
progenitor cells from stem cells;
necessary to produce mature blood
cells.
Endosteal: HSC niche in close
association to a bone surface.
Extracellular matrix (ECM):
includes among other elements
collagen, fibronectin, dystroglycan,
heparin sulfate, proteoglycans,
osteopontin, and laminins.
Hemogenic endothelium: a subset
of endothelial cells with the potential
to differentiate into hematopoietic
cells.
Hematopoiesis: the process of
blood cell formation from HSCs.
HSC exhaustion: a state of turnover
in which the cells are ‘used up’;
HSCs can undergo exhaustion due
to the high demand of reconstitution
in stress or serial transplant settings.
HSC expansion: the process of
increasing the number of HSCs.
HSC niche: a specific BM
environment that provides cellular,

Box 1. Mammalian Hematopoiesis and HSCs

The hematopoietic system is one of the best-studied adult stem cell systems in humans and rodents:

(i) Functionally, HSCs are defined as cells that give rise to long-term multilineage engraftment that persists for at least 20
weeks after primary and secondary transplantation [171].

(ii) Multipotent progenitors can generate all major hematopoietic lineages in transplantation assays in lethally
irradiated recipients, but fail to engraft long-term. Long-term reconstitution of hematopoiesis in a transplant setting
can be achieved by a single long-term (LT)-HSC [3,4,32].

Recent research has been able to phenotypically define murine long-term HSCs:

(i) LT-HSCs as Lin�IL-7a�Sca-1+c-Kit+Flt3�CD34�CD150+CD48�, progenitors including short-term HSCs (ST-HSCs)
as Lin�IL-7Ra�Sca-1+c-Kit+Flt3� CD34+CD150+ CD48�, and

(ii) multipotent progenitors (MPPs) as Lin�IL-7Ra�Sca-1+c-Kit+Flt3low–highCD34+ [4,32,172–174].

Human long-term HSCs and MPPs have been phenotypically defined as:

(i) HSCs: Lin�CD34+CD38�CD45RA�CD90+Rhol�CD49F+, and

(ii) MPPs: CD34+CD38�CD45RA�CD90�CD49F� [3,175].
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chemical, and molecular constituents
and contributes to the regulation of
HSC survival, self-renewal, and
differentiation.
HSC transplantation (HSCT): a
procedure to replenish the blood
system of a recipient by providing a
sufficient number of new HSCs cells
from a donor.
Human leukocyte antigen (HLA):
encodes the major histocompatibility
complex (MHC) proteins in humans
and functions as a determinant of
transplant rejection.
Infused donor HSCs: intravenously
injected HSCs from a donor into a
recipient to reconstitute the
hematopoietic system.
Lin�Sca-1+c-Kit+ (LSK) cells: a
distinct fraction of murine
hematopoietic stem and progenitor
cells in the BM; these are
characterized as Lin�Sca-1+c-Kit+

based on surface marker expression.
Long-term (LT)-HSCs: give rise to
multilineage engraftment post-
transplantation for a timeframe of at
least 20 weeks. LT-HSCs are
phenotypically characterized as
Lin�IL-7a�Sca-1+c-
Kit+Flt3�CD34�CD150+CD48� cells.
Long-term culture-initiating cells
(LTC-ICs): primitive hematopoietic
cells capable of initiating and
sustaining in vitro cultures for >5
weeks, including colony-forming cells
(CFCs) or cobblestone area forming
cells.
Mammalian target of rapamycin
(mTOR) pathway: controls nutrient
sensing, metabolism, and mitogenic
signals to regulate cell quiescence,
proliferation, cell survival, and
longevity; important for PI3K, Akt,
and insulin signal-transduction
pathways.
Mitophagy: see autophagy.
NOD/SCID mice: nonobese diabetic
(NOD)-severe combined
immunodeficiency (SCID) mice
display impaired T and B cell
lymphocytes and deficient natural
killer (NK) cell function. They can
accept allogeneic and xenogeneic
grafts, and are thus an excellent
model system to study human cell
transplantation and engraftment
(xenotransplants).
Pancytopenia: reduction in the
number of all three blood cell types:
red blood cells, white blood cells,
and platelets.
Pimonidazole: a nontoxic
exogenous 2-nitroimidazole low
molecular weight compound that

further divided into arteriolar as well as sinusoidal components [9,18–24,32]. Deeply quies-
cent (dormant) HSCs are believed to localize around arterioles and closer to the endosteum in
the mouse BM, while activated HSCs – which are significantly more abundant than dormant
HSCs – are thought to reside in the vicinity of sinusoids [33–36]. Indeed, recent studies have
revealed that most murine HSCs are present in perivascular locations in close contact with
either sinusoids or arterioles [20,23,36,37]. Indeed, such new and detailed knowledge on niche
architecture and on the association/proximity of HSCs to non-HSC niche cells has been based
on high-resolution imaging studies in mouse BM (particularly from femur)
[12,16,21,33,34,38,39]. Thus, the role of the HSC niche as a crucial contributor to the
regulation of HSC cell self-renewal [1] has been confirmed in mouse models where niche
cells and/or distinct soluble growth factors have been genetically modified; the cell types and
factors within the niche contributing specifically to HSC self-renewal in vivo are detailed below.

Endosteal and Vascular Niches
Both the endosteal niche and the vascular (arteriolar and sinusoidal) niches have been
recognized as regulators of HSC self-renewal as well as HSC function, based in part on
the cellular composition and soluble components found in both of these niches. For example,
multiple heterologous mouse cell types including endosteal osteoblasts [19,33,39], sinusoidal
blood vessels and leptin receptor-positive (Lepr+) perivascular stromal cells [23,32], CXCL12-
abundant reticular (CAR) cells [40,41], nestin+ mesenchymal stem cells [18], non-myelinating
Schwann cells [16], regulatory T cells (Tregs) [38], and megakaryocytes [12,42] have been
shown to locate in close proximity to murine HSCs in vivo. The underlying assumption has been
that proximity serves as a surrogate marker for the relative importance of the regulatory
influence of particular types of stromal cells on HSCs [12,16,21,33,34,38,39]. However, there
are also multiple examples in which cells that are, on average, relatively distant from HSCs
within the BM influence HSCs, such as osteoblasts [43]. Osteoblasts have been reported to
enable a 3–4-fold expansion of human long-term culture-initiating cells (LTC-ICs) in vitro
[44,45], suggesting that stem cell self-renewal can be supported by osteoblast-derived factors.
When parathyroid hormone (PTH/PTHrP) receptors (PPRs) were specifically introduced into
murine osteoblasts, they produced a high level of the Notch ligand Jagged-1 [19]. This caused
a significant increase in the number of osteoblasts, which in turn resulted in an increase in the
number of HSCs in vivo [19]. Similarly, mice with a conditional inactivation of the gene encoding
BMP receptor type IA (Bmpr1a) exhibited an increase in N-cadherin+ osteoblasts, which also
resulted in an increase in the number of HSCs in vivo [9]. However, the tissue-specific
promoters used in these studies [9,19] could also target perivascular osteoblastic progenitors
and not only osteoblasts. Moreover, genetic manipulations of mature osteoblasts have not
resulted in altered HSC function [46–48]. Taken together, a controversial debate still exists
regarding the role mature osteoblasts play in the putative regulation of HSCs. Accordingly,
because mice devoid of N-cadherin in hematopoietic and stromal cells or osteoblastic lineages
have not led to changes in HSC numbers in vivo, the potential role for N-cadherin signaling in
the regulation of HSC expansion in vivo also remains controversial [49,50]. Osteoclasts in turn
have been found to be dispensable for HSC maintenance, and might thus not be involved in
regulating murine HSC self-renewal in vivo [51].

Notch ligand signaling, such as via Jagged-1 in murine endothelial cells (i.e., vascular niche),
has been found to support HSC self-renewal and prevent HSC exhaustion, both in vivo and in
serum-free co-culture assays [52,53]. BM macrophages (osteomacs) have also been reported
to maintain retention of murine HSC in the BM through direct contact of perivascular cells with
HSCs [14,17]. Furthermore, depletion of neutrophils in mouse BM can increase the number of
CAR cells, and subsequently CXCL12 levels, reducing the size and function of the hemato-
poietic niche; and, neutrophil clearance by macrophages can promote hematopoietic stem and
progenitor cell (HSPC) mobilization in the circulation [54]. Indeed, research over the past few
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years has provided a more comprehensive characterization of the cellular composition of the
murine HSC niche and the components that might influence HSC self-renewal in vivo with
respect to both endosteal and vascular niches. Furthermore, multiple new types of niche cells
have been linked to novel putative mechanisms of HSC regulation in terms of number and
function within the BM (Figure 1, Key Figure; also [8,55]). However, further studies will be
necessary to finely dissect the relative and specific contribution of this panoply of niche cell
types in HSC self-renewal, and the functional significance in the interdependence of these
signaling pathways.

Cytokine Secretion by Niche Cells
Niche cells secrete cytokines and growth factors that regulate HSC self-renewal and differenti-
ation in vivo (Table 1). Osteoblast-derived cytokines, including osteopontin (OPN), angiopoietin-
1, �3, thrombopoietin (THPO), granulocyte colony-stimulating factor (G-CSF), stem cell factor
(SCF), and CXC-chemokine ligand 12 (CXCL12 or SDF-1) have been reported to regulate
murine HSC self-renewal [30,41,44,56–61]. Niche-expressed SCF or Kit-ligand, THPO, and
their receptors on HSCs (c-Kit and c-Mpl) are well studied with respect to their role in murine
HSC expansion [23,57,62–65]. Osteoblasts and endothelial cells release SCF, while THPO is
mainly released by osteoblasts. Both c-Kit and c-Mpl are expressed on highly purified HSCs
and genetic deletion of Thpo or Mpl leads to a reduction of the number of murine HSCs [64,66].
Leptin receptor positive (LepR+) perivascular and endothelial cells are another major compo-
nent of the HSC niche and are the primary sources of CXCL12, SCF, pleiotrophin, and Notch
ligands (such as Jagged-1) implicated in HSC regulation [20,23,61]. The putative role for
angiopoietin-1 in HSC self-renewal – a cytokine well known for its role in endothelial cell
remodeling – has been controversially discussed, and a recent report suggests that it might not
directly influence HSC function [67]. Murine BM sinusoidal endothelial cells (BMECs) of the
vascular niche secrete pleiotrophin (PTN) which may positively regulate HSC self-renewal
[68,69]. Specifically, PTN-deficient mice harbor decreased numbers of HSCs in the BM
accompanied by impaired hematopoietic regeneration [68], while PTN can promote in vitro

forms adducts with thiol groups in
hypoxic environments and works as
an effective and nontoxic hypoxia
marker.
Quiescence: the state of being
inactive or dormant in the cell
division cycle.
Radioprotection ability: the
capacity to confer long-term survival
after lethal irradiation (e.g., mice).
Serial transplantation assay:
regarded as the gold standard assay
to determine HSC function in vivo.
Serial (multiple, consecutive, up to 6)
transplantations (e.g., in mice) test
the ability of HSCs to undergo self-
renewal in vivo.
SCID-repopulating cells (SRCs):
human HSCs capable of long-term
reconstitution in immunodeficient
mice (xenotransplant approach).
Self-renewal: cell division producing
two daughter stem cells.
Sinusoids: small blood vessel
capillaries of irregular tubular space
for blood passage within the BM.
HSCs can reside near the sinusoid
networks that present a sinusoidal
niche.
Symmetric cell division: leads to
the generation of two similar types of
daughter cells: either two stem or
two progenitor cells.
Transplantation assay: well-
established assay to measure
multilineage reconstitution and self-
renewal potential of hematopoietic
stem and progenitor cells in
irradiated recipient mice in vivo.
Xenografts: a transplantation setting
in which the donor of a tissue graft
or organ transplant is of a species
different from that of the recipient, for
example human stem cell
transplantation into mice. Generally,
immunodeficient mice, in other
words SCID, NOD/SCID, or NOD/
SCID/Ycnull (NSG) mice, are used as
recipients in human–mouse xenograft
models.

Table 1. Soluble Factors in the Bone Marrow Niche Affecting Mammalian HSCs

Soluble factor Secreted by niche cells Impact on HSC Refs

SCF Osteoblasts, endothelial cells, MSCs,
nestin+ MSCs

Induces HSC maintenance and self-
renewal

[19,23]

THPO Osteoblasts Enhances HSC self-renewal and
survival

[57,107,146]

G-CSF Osteoblasts, endothelial cells,
neutrophils

Induces retention and quiescence [17,44]

CXCL-12 Osteoblasts, endothelial cells, CAR
cells, MSCs, LepR+ perivascular cells

Positive regulator of self-renewal,
retention and function

[20,40,61]

CXCL-4 Megakaryocytes Inhibits self-renewal and induces
quiescence

[12]

Pleiotrophin Sinusoidal endothelial cells, LepR+

perivascular cells
Enhances self-renewal and BM
retention

[68]

Osteopontin Osteoblastic lineage Negative regulation of HSC [56]

Angiopoietin-1 Osteoblasts, osteoprogenitors,
endothelial cells, nestin+ MSCs

Induces self-renewal, and survival [58–60]

TGF-b1 Nestin+ Schwann cells,
Megakaryocytes

Maintenance of HSC quiescence,
inhibition of cell cycle activity

[16,42]

Notch ligand
Jagged-1

Osteoblasts, endothelial cells,
LepR+ perivascular cells

Supports HSC self-renewal and
prevents exhaustion

[19,52,53]
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expansion of long-term repopulating HSCs, both from mouse and human umbilical cord blood
[69]. Moreover, PTN-induced HSC expansion could be blocked by inhibition of Notch activation
through g-secretase [69]. Another study has further implicated Notch signaling in HSC regula-
tion by showing, in serum/cytokine-free co-culture systems, that BMECs secreting Notch
ligands can enhance in vitro HSC self-renewal [52].

Key Figure

The Mammalian Bone Marrow Hematopoietic Stem Cell (HSC) Niche
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Figure 1. The diagram shows the cellular composition and cytokines/growth factors that can impact on HSC self-renewal and function in the bone marrow (BM) niche.
Recent research has identified the role of diverse BM niche cells and HSC progeny including osteoblasts, nestin+ mesenchymal stem cells (MSCs), CXCL12-abundant
reticular (CAR) cells, non-myelinating Schwann cells, BM endothelial cells and adipocytes, megakaryocytes, and neutrophils (PMN) in HSC self-renewal, differentiation,
and function. Niche cells also produce/release several cytokines/growth factors, such as SCF, THPO, TGF-b1, CXCL-4, CXCL-12, G-CSF, OPN, Notch ligands,
angiopoietin 1, and pleiotrophin, to regulate HSC self-renewal, maintenance, survival, retention, and function. The extracellular matrix (ECM) can also regulate HSC self-
renewal and maintenance. Abbreviations: CXCL-4, CXC chemokine ligand 4; CXCL-12, CXC chemokine ligand 12; G-CSF, granulocyte-colony stimulating factor;
HSPC, hematopoietic stem and progenitor cell; MK, megakaryocyte; OPN, osteopontin; PMN, polymorphonuclear cell; SCF, stem cell factor; THPO, thrombopoietin;
TGF-b1, transforming growth factor b1.
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Recent mouse studies also suggest an inhibitory role for perisinusoidal megakaryocytes (MKs)
in HSC expansion in the BM; for instance, depletion of MKs in the BM can cause HSC
expansion due to loss of HSC quiescence [12,42]. Furthermore, MKs can secrete the chemo-
kine CXCL4, and genetic depletion of Cxcl4 in MKs has resulted in increased numbers of
murine HSCs, while CXCL4 administration in mice can reduce HSC numbers in vivo, presum-
ably via increased quiescence [12]. In addition, deletion of Tgfb1 in MKs increased HSC
activation and proliferation, and conversely, activation of TGF-b1 signaling in MKs resulted
in HSC quiescence [42]; indeed, injection of TGF-b1 into MK-ablated mice restored HSC
quiescence and inhibited self-renewal [42]. Furthermore, nonmyelinating nestin+ Schwann cells
have been found to activate TGF-b1-mediated inhibition of HSC self-renewal in mice [16].
Finally, murine BM adipocytes can also secrete soluble factors that inhibit HSC self-renewal
[70], with recent reports suggesting that adipocytes can support murine HSCs in vitro, while not
exhibiting any effects on HSCs in vivo [71]. Taken together, the data indicate that various
cytokines and growth factors derived from the BM niche are able to regulate HSC self-renewal
and differentiation (Table 1), but further functional characterization will be required.

Wnt Signaling and HSC Self-Renewal
Wnt signaling is known to act in a very context-dependent manner and might also be involved in
regulating murine as well as human HSC self-renewal (reviewed in [72]). Expression of
constitutively active b-catenin, a component of the canonical Wnt pathway, resulted in
enhanced murine HSC self-renewal [73]; accordingly, Wnt3A proteins have been shown to
increase murine HSC self-renewal ex vivo [74]. Mice lacking Wnt3a die prenatally, and
deficiency of Wnt3a has been found to impair HSC self-renewal, as evidenced by reduced
reconstitution capacity of fetal liver HSCs [75]. Moreover, exogenous Wnt3a has been shown to
cause reduced murine HSC proliferation relative to cells treated with THPO, but can lead to
higher long-term reconstitution, suggesting an enhanced ability for self-HSC renewal [76].
Others have reported that disrupted secretion of Wnt ligands by genetic deletion of the Porcn
factor – essential for Wnt secretion [77] � or deletion of b-catenin and g-catenin does not affect
adult murine hematopoiesis [78–80]; consequently, this may likely imply a context-dependent
action of Wnt-signaling in hematopoiesis, but has not yet been elucidated. Specifically, HSCs
from b-catenin-deficient mice have normal HSC counts but exhibit impaired long-term growth
and maintenance or support of BCR–ABL-induced chronic myelogenous leukemia (CML) [81].
In other studies, constitutive b-catenin activation resulted in enforced cell-cycle entry and
subsequent exhaustion of murine HSCs, with induction of multilineage differentiation in vivo
[82,83]. In a compound genetic mouse model of Pten deletion and b-catenin activation in
HSPCs, the number of HSCs was increased, although they exhibited defects in differentiation
[84]. Additional studies revealed that stabilization of b-catenin in stromal cells promotes
maintenance and self-renewal of HSCs in a contact-dependent manner, whereas direct
stabilization in hematopoietic cells caused loss of HSCs [85]. Another mouse study using
serial transplantation assays reported an increase in cell cycling, but a decline in HSC
function; expression of the pan-inhibitor of canonical Wnt signaling, Dickkopf1 (Dkk1) in the
niche driven by an osteoblast-specific promoter (Col1a2.3) caused inhibition of Wnt signaling in
HSCs [86]. Recently Dkk-1 was also found to promote murine hematopoietic regeneration in
response to irradiation, acting both directly on stem cells to regulate reactive oxygen species
(ROS) levels, as well as on niche cells to regulate EGF levels via paracrine crosstalk between BM
osteolineage cells and endothelial cells [87]. Genetic deficiencies of Flamingo (Fmi) or Frizzled
(Fz) 8, members of non-canonical Wnt signaling cascade, have been found to reduce the
frequency of murine HSCs in vivo [34]. In this study, Fmi regulated the distribution of Fz8 at the
cell–cell interface between HSCs and N-cadherin+ osteoblasts because the non-canonical Wnt
signaling initiated by Fz8 suppressed the Ca2+–NFAT–IFN-g pathway, antagonizing canonical
Wnt signaling [34]; this resulted in maintenance of quiescent long-term (LT) HSCs in the
niche. Consistent with such observations, ex vivo cultivation of HSCs with non-canonical
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Wnt5A proteins increased the HSC repopulation potential in murine transplantation assays
[88]. The role of Wnt/b-catenin signaling with respect to murine HSC self-renewal and
differentiation, while already investigated to a great extent, remains complex and controversial
and is likely dependent on variables such as genetic dosage and context [72,89]. Nevertheless,
the data overall suggest a distinct positive role of canonical Wnt signaling initiated by the niche
to mediate HSC self-renewal [90]. However, the role of Wnt proteins and Wnt regulatory factors
in the stem cell niche remain to be investigated in greater detail to elucidate the potential of
modulating Wnt signaling to achieve ex vivo human HSC expansion.

Metabolic Regulation of HSCs
HSCs also exhibit a stringent regulation of their hypoxic status [91,92] and of their metabolic
[93] and mitochondrial profiles [94] (Figure 2).

Recent research has identified regulatory pathways and probable links between HSC metabo-
lism, mitochondrial function, energy demands, and their role in regulating HSC quiescence and
self-renewal. These pathways might possibly serve as additional novel targets for HSC
expansion ex vivo. For example, the Lkb1 tumor suppressor is a kinase that functions upstream
of AMP-activated protein kinase (AMPK). Deletion of Lkb1 in mice causes rapid HSC depletion
due to loss of quiescence leading to pancytopenia [95–97]. Lkb1-deficient HSCs exhibit
reduced mitochondrial membrane potential, alterations in lipid and nucleotide metabolism, and
depletion of cellular ATP [95–97]. Furthermore, transcriptome analyses have identified
decreased gene expression of the peroxisome proliferator-activating receptor (PPAR)-medi-
ated metabolic pathway in Lkb1-deficient murine HSCs in contrast to wild-type cells [95]. In
addition, studies have demonstrated a novel role for the promyelocytic leukemia (PML)-driven
PPAR-d–fatty acid oxidation (FAO) pathway in murine HSC self-renewal through regulation of
cell-division symmetry, with the PML–PPAR-d–FAO pathway being able to control the mode of
HSC division [98,99]. Indeed, loss of PPAR-d or pharmacological inhibition of mitochondrial
FAO induced loss of HSC self-renewal and loss of symmetric cell division; thus, symmetric
differentiation commitment was implicated as the prevailing mode of HSC maintenance [99].
The symmetric differentiation mode of HSC division was further confirmed in murine experi-
ments where ex vivo daughter cells from the first HSC division were transplanted into recipient
animals to assess HSC function [99].

A role for metabolic regulation of HSC self-renewal was investigated in animal models where
glucose intake was altered, or where HSCs harboring a genetic deletion of an enzyme involved
in glycolysis were analyzed [100–102]. Specifically, using a zebrafish embryo-to-adult trans-
plantation model, a transient elevation in glucose levels in fish was found to accelerate the
induction of functional HSCs from hemogenic endothelium, as identified from various murine
HSC-reporter lines in contrast to control embryos following glucose exposure [Tg(runx1P1:
eGFP), Tg(cmyb:eGFP), and Tg(CD41:eGFP)] [100]. Mechanistically, elevated glucose
increased mitochondrial ROS which induced expression of hypoxia inducible factor-1a
(HIF-1a); this in turn led to an increased HSC number, while pharmacological inhibition of
ROS, mitochondrial ROS, and HIF-1a using N-acetylcysteine, MitoQ, or dimethyloxallyl glycine
(DMOG) led to a decrease in HSC numbers [100]. Murine HSCs in the BM niche have been
thought to utilize glycolysis rather than mitochondrial oxidative phosphorylation because they
show low mitochondrial respiration and high glycolytic flux [94]; this suggests a unique
metabolic requirement for HSCs which might enable these cells to adapt to low oxygen
tension in the BM niche [94]. Murine HSCs also exhibit higher pyruvate kinase activity compared
to progenitors and more differentiated BM cells through a pyruvate dehydrogenase kinase
(PDK)-dependent mechanism [93]. A dependency of HSC on glycolysis has also been reported
in cases where enzymes involved in aerobic glycolysis have been genetically deleted in mice.
For instance, deletion of lactate dehydrogenase A (Ldha) was reported to block the number and
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function of both murine HSCs and progenitors upon secondary BM transplantation [102].
Others have found, by blocking glutaminolysis with 6-diazo-5-oxo-L-norleucine (DON) in vitro,
or in vivo in mice, that erythroid specification of human and murine HSCs requires glutamine-
dependent de novo nucleotide biosynthesis [101]. Furthermore, supplementation with nucleo-
sides rescued erythropoiesis [101]. This suggests a broader regulatory input of metabolic
pathways in terms of glycolysis and glutaminolysis on HSC self-renewal and differentiation
[101]. In addition, starvation-induced metabolic stress in murine HSCs appears to be reduced
by active autophagy, resulting in improved HSC maintenance [103], but the role of autophagy
in regulating HSC self-renewal requires further investigation. Finally, stem cell divisions can
result in an asymmetric allocation of mitochondria to one daughter cell versus another;
daughter cells receiving aged mitochondria will differentiate, while daughter cells receiving
low amounts of mitochondria maintain stemness in human mammary stem-like cells [104]
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Figure 2. Metabolic Regulation of Mammalian Hematopoietic Stem Cells (HSCs). (A) HSCs exhibit condensed
and immature mitochondria, low metabolic status, and high glycolytic activity, as suggested by low ATP, low ROS, and low
membrane potential (DC) which maintain the stemness of the HSCs, in contrast to progenitors and more differentiated
cells that exhibit high mitochondrial activity and utilize oxidative phosphorylation (OxPHOS). Furthermore, stabilized
hypoxia-inducible factor 1a (HIF-1a) in HSCs can support self-renewal and stemness potential. (B) Mechanisms of
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(Figure 3). These data suggest that HSC self-renewal is metabolically fine-tuned, at least with
respect to glycolysis. These novel findings might open up alternative avenues to explore the
potential of enhancing ex vivo human HSC self-renewal.

Mitochondria, Hypoxia, and ROS
Mitochondria are indispensable for energy generation. Mammalian HSCs exhibit low mito-
chondrial content and mitochondrial potential, with reduced rates of oxygen consumption and
low ATP content but higher lactate production [93,94] (Figure 2); this suggests that HSC utilize
glycolysis rather than oxidative phosphorylation. Moreover, mice devoid of mitochondrial
phosphatase (Ptpmt1�/�) have shown a 40-fold increase in the number of HSCs in the BM
relative to wild-type animals, and this was attributed to defective HSC differentiation [105].
Consequently, it is possible that mitochondrial bioenergetics may be directly involved in the
mode of HSC division. These studies further imply a distinct mitochondrial activity profile in
HSCs relative to more differentiated cells � a process which may be necessary to meet the
energy demands of HSCs upon activation, and to favor self-renewal over differentiation
[93,94,105].
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An earlier study demonstrated that HSCs, in addition to residing in hypoxic niches, can also
exhibit intracellular hypoxia, and express a stabilized form of the transcription factor HIF-1a
within mouse BM HSCs [92]. Under normoxia, HIF-1a is hydroxylated by O2-dependent prolyl
hydroxylases, followed by von Hippel–Lindau protein (VHL) and E3 ubiquitin ligase-derived HIF-
1a degradation [106]. However, during hypoxic conditions, HIF-1a can be stabilized upon
suppression of HIF-1a prolyl hydroxylation [11,106]. Stabilized HIF-1a associates with HIF-1b
to form a transcription factor that activates the promoters of multiple glycolytic genes [11]. By
contrast, HIF-1a-deficient mice exhibit loss of HSC cell-cycle quiescence and reduced HSC
numbers upon stress, indicating that hypoxia/HIF-1a-dependent regulation of HSC quies-
cence and self-renewal may occur [92]. A positive role of HIF-1a in HSC self-renewal has been
further supported in vitro in human hematopoietic cell lines or murine primitive cells treated with
either SCF [63] or THPO [107], and these exhibit higher stabilized levels of HIF-1a than cells
without treatment. Another study also reported that HSPCs in murine femur BM could maintain
a hypoxic profile cell-intrinsically regardless of their localization in the vicinity of vascular
structures or of their cell-cycle status, as evidenced from imaging cytometry revealing HIF-
1a expression and reduced pimonidazole levels (a surrogate marker for hypoxia) [39].
However, because the pimonidazole adduct is insensitive to reoxygenation [108], further
studies will be necessary to confirm the extent to which hypoxia within HSCs can be directly
correlated to a hypoxic niche. Together, both a niche-regulated and cell-intrinsic hypoxic status
have been implicated in HSC maintenance in vivo and might be exploited during ex vivo
expansion protocols.

From another angle, mitochondrial aerobic metabolism is the main source of ROS generation in
HSCs [109]. Ablation of the Polycomb repressor protein (Bmi1) in mice has led to defects in
stem cell self-renewal and has been mechanistically linked to impaired mitochondrial function,
reduced ATP generation, and increased intracellular ROS levels [110]. Indeed, ROS at low
levels can also function in signaling [111]. Quiescent HSCs exhibit a low level of ROS that
contributes to higher self-renewal potential and long-term stemness, while a higher level of ROS
within HSCs or in the niche can result in loss of HSC from differentiation, proliferation, or
apoptosis [112–114]. Consequently, mice that lack components of the ROS regulatory system
frequently display a loss of HSC self-renewal [113–115]. For example, ataxia telangiectasia
mutated deficient (Atm�/�) mice have shown progressive BM failure (HSC), as evidenced by
failed BM reconstitution and a decline in hematocrit levels in old mice relative to young, which
has been attributed to elevated ROS levels in HSCs [115], and which in addition lead to p38
activation [116]. Moroever, Forkhead transcription factors (FoxO) that act downstream of the
Pten/PI3K/Akt pathway and are activated in response to ROS, have been found to be crucial for
HSC self-renewal in mice, specifically for the in vivo maintenance of the HSC pool that depends
on self-renewal [113,114]. Indeed, Foxo1/3/4 triple-knockout (KO) mice exhibited a reduced
HSC pool size, and HSCs exhibited defective long-term repopulation as well as increased cell
cycling and apoptosis associated with high ROS [114]. Similarly, the BM of Foxo3a KO mice
exhibited decreased HSC repopulation potential, as well as defective maintenance of quies-
cence associated with elevated ROS, leading to p38 activation [113]. In this study the
antioxidant N-acetyl-L-cysteine decreased p38 activation while inhibition of p38 restored
the colony-forming capacity of Foxo3a KO Lin�Sca-1+c-Kit+ (LSK) cells, at least in vitro
[113]. These data support the notion that appropriate levels of ROS and antioxidant enzyme
activity may be crucial for the regulation of HSC quiescence, self-renewal, and differentiation
[117,118]. Thus, it is possible that pharmacological modulation of ROS concentrations as well
as of signaling pathways regulated by ROS in HSCs might facilitate HSC expansion ex vivo,
although this remains to be tested.
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HSC Expansion Ex vivo: Status and Perspective
HSCs undergo massive expansion in numbers in vivo during the process of hematopoietic
reconstitution after stress, such as from infection, lipopolysaccharide challenge, chemother-
apy, radiation, or transplantation [4,30,31], but this still cannot be recapitulated by ex vivo
expansion approaches. Successful protocols for the expansion of both HSCs as well as
hematopoietic progenitor cells ex vivo are warranted in the clinic because higher numbers
of progenitors and HSCs in transplants provide more short-term progeny that are required for
better cell survival, and at the same time generate more robust long-term reconstitution [119].
HSC ex vivo expansion efforts are primarily based on protocols to expand both murine LSK
cells (containing stem and progenitor cells) and human CD34+ cells (also containing both stem
and progenitor cell populations). High-throughput screening of chemical compound libraries
(see below) has resulted in a few successful attempts towards human HSC expansion ex vivo
[120,121] (Table 2). In addition, protocols for bioengineering HSC niches using extracellular
matrix (ECM) components and 3D cultures have been established for human and mouse HSC
expansion. In this section we discuss these recent findings and other niche-informed
approaches for HSC expansion ex vivo that aim to conserve the functional and molecular
characteristics of HSCs.

High-Throughput Screening of Compounds for Expansion
A major breakthrough in ex vivo expansion of HSCs was achieved by the laboratory of
Cooke [120]. They utilized high-throughput technology for an unbiased screen to search for
factors that could expand human HSCs ex vivo, using a library of 100 000 small molecules
and serum-free expansion medium containing THPO, SCF, Flt3L and IL-6 [120]. A purine
derivative, StemRegenin 1 (SR1), was found to promote a 50-fold ex vivo expansion of
human cord blood-derived CD34+ cells and a 17-fold increase in the number of human
HSCs engrafting long-term in immunodeficient mice [120]. SR1 antagonizes the aryl
hydrocarbon receptor (AHR) [120]. Recently, a clinical study using SR-1 demonstrated
remarkable early neutrophil and platelet recovery and better engraftment in human recip-
ients who received umbilical cord blood CD34+ cells treated for 15 days ex vivo with SR-1
compared to recovery in recipients who received equal ‘start’ numbers of CD34+ cells from
the same unit but that were not expanded [122]. A recent study from the laboratory of
Sauvageau showed that a pyrimidoindole derivative, UM171, induces human HSC self-
renewal and ex vivo expansion in an AHR-independent manner, given that the expression of
the AHR targets AhRR and CYP1B1 remained unaltered upon UM171 treatment [121]. A
library of 5280 low molecular weight compounds and 300 analogs were screened to identify
UM171. UM171 resulted in a better expansion of more primitive human CD34+CD45RA
cells from mobilized peripheral blood (mPB) than SR1 [121]. Consequently, UM171 and
SR1 may represent promising chemical compounds for ex vivo expansion of human HSCs.
Of note, they do not act on murine HSCs [120,121]. However, the mechanisms underlying
the SR-1 or UM171-mediated HSC self-renewal and differentiation block are not known.
We speculate that, given their putative role in determining the mode of HSC division, these
might interfere either with the regulation of ROS or with the mitochondrial or metabolic
function that allows HSC self-renewal and expansion.

Reliance on Cytokines and Growth Factors
Cytokines were among the first drugs tested for HSC ex vivo expansion (Table 2). As
mentioned, numerous cytokines have been shown to influence murine HSC numbers, at least
in vivo [1,58,64–66,69,123–130]. Several cytokines singly, or in combination, have been
investigated for their effects on murine and human HSC cultures and expansion ex vivo;
however, only a maximum of 2–4-fold expansion of murine and human HSCs with long-term
repopulation potential has been achieved (see also [126]). One study reported a modest
increase of fourfold and 10-fold in the number of human cord blood (CB) CD34+CD38� cells
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and colony forming units (CFUs), respectively, as well as a 2–4-fold increase in SCID-repo-
pulating cells (SRCs) in NOD/SCID mice after 4 days of culture with cytokines (SCF, Flt3L, G-
CSF, IL-3, IL-6) [128]. However, after 9 days of culture, despite further increase in the total
number of CD34+ cells, the reconstitution ability was lost [128]. In another study, human CB

Table 2. Successful Protocols for HSC Expansion Ex Vivoa

Factors Cells tested Species Supplement Culture
period

Assay Fold expansion Refs

Cytokine-derived expansion

Cytokines CB
CD34+38�

H SCF, Flt3L,
G-CSF, IL-3,
IL-6

4 days CFU and CRU (HSC
frequency)

15-fold CFU; fourfold
chimera

[128]

Cytokines CB
CD34+38�

H Flt-3, SCF, IL-3,
IL-6, and G-CSF

5–8 days CFU, LTC-IC, CRU
(HSC frequency)

100-fold CFU; fourfold
LTC-IC; twofold CRU

[131]

Angiopoietin SP CD45+ Sca-1+ M SCF, THPO,
FGF-1, IGF-2

10 days CRU (HSC frequency) 24–30-fold [130]

Pleiotrophin CD34� LSK,
CB CD34+

38�

M and H SCF, Flt3L,
THPO

7 days CRU frequency/LT
engraftment

Fourfold CRU;
10-fold chimera

[69]

Virus-mediated overexpression, TFs, etc.

HOXB4 CB CD34+ H Co-culture on
MS-5 mouse
stromal cells

4–5 weeks LTC-IC assay,
reconstitution analysis

20-fold LTC-ICs;
2.5-fold long-term
repopulation

[145]

Fbxw7 LSK M SCF, THPO 10 days Competitive
reconstitution analysis

>Twofold long-term
repopulation

[147]

Dppa5 CD34�48� LSK M SCF, THPO 14 days Competitive
reconstitution analysis

6–10-fold [154]

Hypoxia, ROS, and metabolic modulations

PDH inhibitor
(1-
aminoethylphosphinic
acid, 1-AA)

CD34�Flts� LSK M SF-O3 medium
1.0% BSA,
serum-free,
SCF, THPO

2–4
weeks

CFU/competitive
reconstitution analysis

Twofold CFUs; fivefold
LT repopulation

[93]

Mitochondrial
phosphatase Ptpmt1
inhibitor, alexidine
dihydrochloride (AD)

LSK and
in vivo treatment
CD34+

38�

M
H

SCF, THPO,
Flk-3

7 days CFU and LT chimera
34+38� number/CFU

Twofold CFUs; 3–5-fold
LT repopulation
Twofold number;
twofold CFUs

[150]

GSK-3b inhibitor,
CHIR99021

LSK and
CB CD34+

LSK Flk�

M and H
M

With rapamycin
in cytokine-free
X-VIVO medium
SCF, THPO,
and insulin

7 days
14 days

HSC frequency/LT
engraftment
Competitive
reconstitution analysis

10–20-fold HSC
number; 2–5-fold
LT repopulation
100-fold number;
2–10-fold LT
repopulation

[135]
[84]

High-throughput chemical screens

SR-1 CD34+

MPB
UBC

H SCF, Flt3L,
THPO, IL-6

7–21 days Number/CFU/
competitive
reconstitution analysis

65-fold CFUs;
17-fold enhanced
chimera

[120]

UM171 CD34+

MPB
UBC

H SCF, Flt3L,
THPO

7–21 days Number/CFU/
competitive
reconstitution analysis

>100-fold LT-HSC;
35-fold enhanced
chimera

[121]

aAbbreviations: CB, cord blood; CFU, colony forming unit; CRU, competitive repopulating unit; CXCL-4, CXC chemokine ligand 4; CXCL-12, CXC chemokine ligand 12;
Dppa5, developmental pluripotency associated 5; Fbxw7, F-box and WD repeat domain containing 7, E3 ubiquitin protein ligase; FGF-1, fibroblast growth factor 1;
Flt3L, FMS-like tyrosine kinase 3 ligand; G-CSF, granulocyte-colony stimulating factor; IGF-2, insulin-like growth factor 2; IL-3, interleukin 3; OPN, osteopontin; LT,
long-term; LTC-IC, long-term culture initiating cell; MPB, mobilized peripheral blood; MS-5, murine MS-5 stromal cell line; SCF, stem cell factor; SP, side population;
SR-1, StemRegenin1; TGF-b1, transforming growth factor b1; THPO, thrombopoietin; TFs, transcription factors; UCB, umbilical cord blood.
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CD34+CD38� cells in serum-free medium containing Flt-3, SCF, IL-3, IL-6, and G-CSF for 5–8
days resulted in robust 100-fold CFU expansion, fourfold LTC-IC, and twofold increase in the
competitive repopulating unit (CRU) [131].

Overall, these cytokines and their combinations can maintain HSCs and progenitors, and most
likely protect them against apoptosis during ex vivo proliferation, as evidenced from flow
cytometric assays [66,132], although only resulting in a modest expansion of human HSCs,
albeit a multilog expansion of progenitor cells [126,132]. Thus, additional factors are clearly
necessary for successful expansion of human HSCs ex vivo. Newly identified factors in stroma-
conditioned medium, such as nerve growth factor and collagen 1, have resulted in better
expansion of murine HSCs compared to the ‘standard’ cocktail listed above [133]. This
suggests that the stroma still harbors additional yet-to-be-determined factors that alone, or
in combination, might result in significant ex vivo expansion of HSCs, representing an exciting
novel area of research to improve HSCs expansion ex vivo.

Several laboratories have also tested the activation of Wnt signaling for stem cell expansion.
The laboratory of Reya reported an 8–80-fold expansion of functional murine HSCs upon short-
term culture in serum-free medium supplemented with low concentrations of cytokines (SLF,
Flt-3L, IL-6), transducing HSCs with constitutively active b-catenin through upregulation of the
self-renewal gene homeobox B4 (Hoxb4) [73]. Moreover, short-term pretreatment of cells with
a GSK-3b inhibitor (6-bromoindirubin 30-oxime or BIO) that activates b-catenin was demon-
strated to enhance the engraftment of ex vivo-expanded human cord blood CD34+ HSCs in
murine xenograft models [134]. Another study reported that pharmacological, and thus
reversible, activation of both Wnt/b-catenin and PI3K/Akt signaling in HSCs using another
type of GSK-3b inhibitor (CHIR99021) in combination with cytokines (SCF, THPO) and insulin
significantly expanded (�100-fold) the number of HSCs [84] after 14 days of cultivation of
murine HSCs in serum-free medium, suggesting that cooperation between these pathways
might be beneficial for HSC self-renewal and expansion [84]. Cultivation of human CD34+ cells
as well as murine LSK cells in cytokine-free medium for 7 days in the presence of rapamycin
[inhibiting the mammalian target of rapamycin (mTOR) pathway] and CHIR99021 (acti-
vating the canonical Wnt pathway) resulted in maintenance of the number of human and murine
HSCs, as confirmed in serial transplantation assays [135]. In addition, when provided in excess,
prostaglandin E2 (PGE2) – which modifies the Wnt signaling cascade at the level of b-catenin
degradation [136] – has been shown to result in an increase in HSC numbers in zebrafish and
mouse embryos [137]. Treating HSCs with PGE2 increased the number of human CFUs in vitro,
and enhanced the engraftment of unfractionated and human cord blood CD34+ HSPCs upon
xenotransplantation [138], which may support a role for Wnt signaling in HSC expansion.
Another study used an automatic fed-batch media dilution approach to control inhibitory
feedback signals during culture of human cord blood HSPCs; this led to an 11-fold expansion
of SCID repopulating cells with self-renewing, multilineage repopulating ability [139], implying a
crucial role for inhibitory feedback loops in mitigating HSCs expansion ex vivo.

Regulation of ROS, Antioxidants, and Hypoxia
Cytokines such as GM-CSF, IL-3, SCF, and THPO have been shown to increase murine and
human HSC proliferation through a rapid increase in the level of ROS in quiescent cells [118].
Specifically, elevation of ROS induced HSC-specific phosphorylation of p38 MAPK upon
culture in serum-free media supplemented with cytokines including SCF, IL-3, and EPO, while
antioxidant treatment or inhibition of p38 MAPK ex vivo rescued ROS-induced defects in HSC
repopulating capacity, preventing exhaustion of murine HSCs in serial transplantation experi-
ments [116]. These data suggest that p38 MAPK or ROS inhibition in ex vivo cultures might be
able to contribute to HSC expansion. In addition, roles of hypoxia and fine-tuned regulation of
HIF-1a stabilization in HSC maintenance have been established by both biochemical and
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genetic approaches [91,92,140,141]. For instance, mouse BM cells cultured under hypoxia
showed a fivefold higher day 14 spleen colony-forming efficiency as well as enhanced radio-
protection ability than under normoxic conditions [140], suggesting better maintenance and
expansion of HSCs. Upon cultivation under hypoxic conditions, murine HSCs have also been
shown to accumulate at the G0 stage of the cell division cycle, which results in an increase in
HSCs with long-term engraftment potential relative to non-hypoxic conditions [141]. Further-
more, hypoxia induces HIF-1a-dependent expression of the cell-cycle regulators p21, p27,
and p57 in murine HSCs [141]. Isolating and manipulating murine BM and human cord blood
under strict hypoxic conditions in vitro demonstrated that a higher number of HSCs can be
recovered from the BM under these conditions [142], while a brief exposure to ambient oxygen
was found to decrease the number of HSCs upon BM harvest, through an extraphysiologic
oxygen shock/stress (EPHOSS) mechanism [142]. Together, it is therefore possible that
maintaining a strict hypoxic environment might be beneficial for ex vivo expansion of HSCs,
but robust validation of this hypothesis is still warranted.

Retrovirus-Mediated Introduction of Stem Cell Regulators and Reprogramming
Multiple approaches have been reported for ex vivo HSC expansion based on retrovirus-
mediated expression of HSC maintenance or expansion genes. For example, overexpres-
sion of Hoxb4 expands murine HSCs approximately 40–1000-fold in vitro and in vivo,
respectively [126,143,144], without stem cell transformation. Human cord blood CD34+

HSCs have been expanded approximately 2.5-fold using a HOXB4 fusion protein
expressed by the stromal cell line MS-5 [145]. A challenge remains because the HOXB4
protein is unstable in culture when provided extrinsically, as in the previous approach.
THPO also positively regulates HOXB4 expression in murine and human hematopoietic cell
lines [146], and this might explain in part the beneficial effect of THPO on HSC maintenance
ex vivo, although this remains speculative. The expression of the ubiquitin-ligase, F-box,
and WD-40 domain protein 7 (Fbxw7) that mediates degradation of cell-cycle activators in
HSCs is upregulated by hypoxia [147]. As such, overexpression of Fbxw7 in murine LSK
cells has been reported to cause >twofold higher reconstitution capacity during ex vivo
culture by maintaining HSC quiescence through a reduction in the expression of c-Myc,
Notch1, and mTOR [147]. While the transduction of HSCs with the above-mentioned
regulators expand HSCs to small but distinct levels, there is a risk of insertion-mediated
oncogene activation (as with all transgenic approaches), which will most likely preclude the
application of these current approaches in the clinic.

Recently, two studies have described the generation of functional HSCs via reprogramming
from adult endothelium and human pluripotent stem cells [148,149], introducing novel exciting
technologies into the field of HSC generation. Adult mouse endothelial cells were fully reprog-
rammed to HSCs (rEC-HSCs) through transient ectopic expression of four transcription factors
(Fosb, Gfi1, Runx1, and Spi1; FGRS) and vascular-niche-derived angiocrine factors from a
feeder layer [148]. This finding was interesting because rEC-HSCs present a transcriptome
profile and long-term self-renewal capacity similar to those found in adult HSCs [148]. Fur-
thermore, multilineage reconstitution was achieved in both primary and secondary bone-
marrow transplantation settings [148]. In another study, human pluripotent stem cells were
first directed towards the hemogenic endothelium using chemical signals, and seven tran-
scription factors (ERG, HOXA5, HOXA9, HOXA10, LCOR, RUNX1, and SPI1) pushed the
hemogenic endothelium towards a blood stem cell state that provided in vivo multilineage
reconstitution in a xenograft mouse model [149]. These findings provide a significant advance in
the generation of HSCs that does not involve altering the mode of division of existing HSCs, but
instead involves generating unlimited HSC numbers ‘from scratch’. Nevertheless, the transla-
tional potential of these approaches and newly generated cells currently remains limited due to
the use of reprogramming factors bearing oncogenic potential.
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Targeting Metabolic Pathways
HSC metabolism has also been targeted to investigate HSC expansion, but with mixed
success. When glycolysis was favored in murine HSCs using a pyruvate dehydrogenase
(PDH) inhibitor (1-aminoethylphosphinic acid, 1-AA), the cycling and colony growth of HSCs
was suppressed during ex vivo culture, while HSC frequency and reconstitution ability was
maintained even after 4 weeks of culture [93]. Alexidine dihydrochloride (AD) inhibits mito-
chondrial phosphatase Ptpmt1 [150] and can shift mitochondrial aerobic metabolism to
glycolysis through AMPK [150]. Thus, treatment of murine LSK cells with AD under normoxic
conditions increased their transplantation efficiency about threefold in competitive transplant
settings relative to untreated control cells [150]. Consequently, it will be interesting to test if
there is a synergistic effect of hypoxia and treatment with AD with respect to HSC expansion.
Recent reports demonstrate that chemical uncoupling of the electron transport chain, which
decreases mitochondrial activity, resulted in increased murine HSC self-renewal under ex vivo
culture conditions, generally causing rapid differentiation [151]. In general, active mitophagy
appears to be a mechanism necessary for directing HSCs towards self-renewal and away from
differentiation (at least in mice) [152] (Figure 3). Indeed, murine HSCs have been demonstrated
to exhibit high mitophagy function via the PPAR–FAO pathway, preferentially undergoing
symmetric divisions to self-renew. Accordingly, GW501516, a PPAR–FAO agonist, can
enhance LTC-IC frequency via mitophagy activation in human HSCs [152]. Together, these
studies suggest that targeting the ‘metabolic switch’ to enhance HSC glycolysis during an ex
vivo culture might potentially enhance ex vivo self-renewal and perhaps even HSC expansion, a
hypothesis awaiting robust validation.

Targeting ER Stress Pathways
HSCs can encounter diverse types of stress such as elevated ROS and DNA damage, but also
endoplasmic reticulum (ER)-dependent stress stemming from the unfolded protein response
(UPR). Indeed, recent work demonstrates that an overall appropriate response to ER stress
from unfolded proteins can support HSC maintenance, self-renewal, and expansion [153–155].
For example, human HSCs, but not progenitors, are highly predisposed to undergo apoptosis
through PERK-mediated UPR to ER stress, while overexpression of the co-chaperone ERDJ4
(that increases ER protein folding) has been found to enhance human HSC engraftment in a
mouse xenograft model [153]. Moreover, in contrast to BM HSCs, fetal liver (FL) HSCs undergo
very rapid expansion in vivo, and despite an increased rate of protein synthesis, they do not
exhibit ER stress [155]. Instead, taurocholic acid, the major maternal and fetal liver bile acid (BA)
form, has been shown to serve as a chemical chaperone that can inhibit protein aggregation
and support HSC growth in mice [155]. Such recently identified chaperones might thus
comprise a novel class of compounds to be tested in ex vivo expansion approaches for adult
HSCs. Developmental pluripotency-associated 5 (Dppa5), an RNA-binding protein, is highly
enriched in HSCs [154]. Murine HSCs that ectopically express Dppa5 have been reported to
robustly increase their reconstitution potential in transplantation experiments, reducing (ER)
stress and apoptosis during ex vivo culture for 14 days [154]. Correspondingly, taurourso-
deoxycholic acid (TUDCA), a chemical chaperone that reduces ER stress, was shown to
enhance HSC engraftment approximately fivefold in this mouse model [154]. In general, these
studies could indicate that minimizing ER stress might potentially contribute to successful HSC
expansion ex vivo.

The ECM and Niche Engineering
Niches in the BM provide, in addition to soluble factors, specific ECM components and
structural 3D architectures [8,156,157]. Several polymeric biomaterial substrates that mimic
the structure of the ECM have been explored with respect to their ability to enhance HSC
expansion. Diverse ECM substrates including polyethylene terephthalate (PET), tissue culture
polystyrene (TCPS), and polyether sulfone (PES) (Box 2) have failed to enhance HSCs
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expansion ex vivo [158]. However, fibronectin-coated PET has shown elevated expansion in the
number of human HSCs ex vivo versus unmodified biomaterials [159,160]. Similarly, aminated-
PES substrates and cytokines (SCF, Flt3, THPO, and IL-3) have been reported to support a 3–
4-fold expansion of human CD34+ HSCs derived from umbilical cord blood compared to tissue
culture polystyrene [161,162]. Moreover, cultivation of human HSCs with BM mesenchymal
stem cells (MSCs) in the absence of additional cytokines resulted in a 5–7-fold increase in the
number of LTC-ICs compared to HSCs cultivated in the absence of MSCs [163]. MSCs might
thus provide niche components, including soluble cytokines, that support HSC expansion ex
vivo.

Various studies have demonstrated that elasticity, dimensionality, and topography of the matrix
positively influences HSC proliferation and expansion [156,164,165]. Specifically, cultivation of
mouse or human primitive hematopoietic cells on a tropoelastin substrate led to a 2–3-fold
expansion of HSCs compared to cultivation on bare tissue culture plates due to changes in
substrate elasticity [165]. 3D collagen-coated porous reticulated polyvinyl formal (PVF) resin
scaffolds with low oxygen have also led to murine HSC expansion over 3 weeks in the presence
of BM stromal cells without exogenous cytokines [166]. Furthermore, 3D PVF resin scaffolds
that produced an oxygen gradient, as opposed to a constant hypoxic environment, mimicked
key features of marrow physiology [91], leading to threefold higher expansion of primitive
CD34+ cells in a 3D setting, in contrast to 2D culture systems [167]. Accordingly, 3D culture
systems (e.g., nonwoven porous carriers, macroporous collagen carriers, and porous micro-
spheres such as PET and collagen) have resulted in a threefold increase in human HSC self-
renewal compared to 2D cultures, and this was further enhanced sevenfold by THPO and Flt-3
ligand supplementation [168]. In addition, a fibronectin-immobilized 3D PET scaffold led to a
remarkable 100-fold expansion of human HSCs [160]. A high immuno-phenotypic expansion
(1014 vs 106 input cells) of cord blood CD34+ HSCs was also observed with fibrin scaffolds in
the presence of human umbilical cord (UC)-MSCs and cytokine supplementation [SCF, THPO,
FGF-1, angiopoietin like-5 (Angptl-5), insulin-like growth factor binding-protein 2 (IGFBP2), and
heparin] following 14 days of culture, which was mirrored by a high long-term reconstitution
ability (58.5%) in murine xenotransplantation models [169].

The laboratory of Blau utilized a hydrogel microwell array for rapid analysis of murine HSC
proliferation kinetics which correlated well with subsequent serial long-term blood reconstitu-
tion in mice in vivo [76]. In such assays Wnt3a resulted in slow HSC proliferation compared to
several other tested proteins such as THPO and IL-11, and this led to higher long-term
reconstitution, suggesting that Wnt3a might potentially enhance HSC self-renewal, while THPO
and IL-11 induced robust proliferation as well as differentiation [76]. Others have described a
bone-marrow-on-a-chip platform to replicate murine BM niche-like analogs for HSC in vitro
cultures [170]. To generate an artificial niche, they combined demineralized bone powder and

Box 2. ECM Modeling and HSC Niche Reconstitution

The ECM consists of, among others, collagen, fibronectin, dystroglycan, heparin sulfate, proteoglycans, osteopontin,
and laminin [56,158,159,169,176], and can bind to adhesion molecules such as integrins on HSCs. Polymeric
biomaterial substrates such as polyethylene terephthalate (PET), tissue culture polystyrene (TCPS), and polyether
sulfone (PES) fibers have the advantage of defined composition, surface chemistry, and toxicity profile. Recent evidence
further suggests that substrate elasticity can influence self-renewal versus differentiation outcomes of murine and
human HSC divisions ex vivo [156,164,165]. For example, the tropoelastin substrate can enhance HSC self-renewal
through mechanotransduction machinery; blockade of mechanotransduction using myosin II inhibition abrogated
tropoelastin-induced expansion effects [165]. Currently the field focuses on developing 3D biomaterials of low density,
with open-cell foam structure scaffolds and distinct levels of elasticity, using stromal cells to support HSC expansion and
which could be adopted as analogs of the trabecular bone [170,176]. Novel approaches in the area of 3D ECM research
for stem cell expansion include microfluidic trap devices for capturing individual HSCs to perform post-culture single-cell
analysis [177].
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BMP2/4 into a collagen scaffold, which was subcutaneously transplanted into mice to form into
a bone-encased marrow compartment containing hematopoietic cells. This engineered bone
marrow (eBM), when used in a microfluidic device ex vivo, retained the number of HSCs after 1
week of culture [170]. This system may represent a promising novel platform for screening
diverse drugs for ex vivo HSC expansion in an in vivo-like artificial niche setting. Collectively, the
data suggest that novel ECM and niche engineering approaches in the presence of stromal
cells might support HSC self-renewal and expansion ex vivo (Box 2).

Concluding Remarks
Over the past decade several novel studies have suggested that HSC expansion ex vivo might
actually be feasible. This is based on a better understanding of HSC-intrinsic as well as niche-
specific factors regulating HSC self-renewal in vivo, and which have led to novel putative
strategies to expand HSCs ex vivo. Significant advances in HSC expansion have also been
made recently in high-throughput screening approaches of low molecular weight compound
libraries. Ultimately, a combination of 3D scaffolds mimicking the niche 3D architecture, mixed
with cytokines/chemokines and stromal cells under the appropriate oxygen and metabolic
conditions, might provide a solid option for achieving robust expansion of adult HSCs ex vivo.
However, many mechanisms of HSC regulation in the niche remain poorly understood (see
Outstanding Questions and Box 3), and extensive and robust validation of these platforms will
be necessary as a first essential step for clinical translation. Nevertheless, various modalities,
strategies, and methodologies will undoubtedly emerge for HSC expansion in the near future,
and it will be exciting to follow such advances in stem cell research.
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